
Analysis of Multiple Random Walkers for Service

Discovery in Fog Computing Network Environments

Konstantinos Skiadopoulos, Konstantinos Giannakis, and

Konstantinos Oikonomou

Department of Informatics

Ionian University

Corfu, Greece

Email: {kskiad, kgiann, okon}@ionio.gr

Ioannis Stavrakakis

National and Kapodistrian University of Athens,

Greece - Universidad Carlos III de Madrid and

IMDEA Networks Institute, Spain

Email: ioannis@di.uoa.gr

Abstract—The multiple random walkers mechanism is revis-
ited in this paper for service discovery purposes considering
modern dynamic network environments like fog computing,
where there is a need for certain services (e.g., virtual network
functions) to be available to the end users. Network coverage
is analytically investigated here considering multiple random
walkers in geometric random graph topologies of various den-
sities. The analytical results derived here are shown to be in
accordance with other results in the literature (e.g., coverage
under multiple random walkers for fully connected network
topologies). Moreover, when there exist certain coverage and
time constraints (i.e., the minimum fraction of network nodes
to be covered within a certain time period), the required
minimum number of random walkers satisfying these constraints
is also analytically derived. Simulation results demonstrate the
effectiveness of multiple random walkers for service discovery
purposes and support the claims and expectations of the analysis.

Index Terms—Multiple random walkers, fog computing, cov-
erage, service discovery, virtual network functions, cover time,
geometric random graphs.

I. INTRODUCTION

Fog computing has seen a significant growth over the last

few years as an intermediate network between the offered

cloud services and the end user, particularly due to the

increased number of users under the Internet of Things (IoT)

and the proliferation of available services, e.g., [1], [2]. Fog

computing is a distributed paradigm that acts as an intermedi-

ate layer between cloud data centers and other devices (e.g.,

mobile, sensors etc.). It offers computing, networking, and

storage facilities so that cloud-based services can be extended

closer to the end user [3].

In such network environments, the available resources

within the fog network can be utilized and benefit the (close-

by) end user. The network resources are often offered in

the form of virtual machines that instantiate the particular

services that are hosted either by the cloud data centers or

fog devices [4], [5]. An example of such services is virtual

network functions [6] where traditional network functions are

distributedly executed on virtual machines located either in the

cloud or the fog network [7], [8]. Eventually, this is a highly

dynamic environment where end users move while virtual

machines and the offered network functions may also change

their locations, thus making the problem of service discovery a

challenging one. Another example is when big streams of data

from IoT devices need to find their way to fog nodes acting

as gateways to cloud data centers.Finally, situations where fog

nodes are obligated to forward part or all of its workload to

its neighbor nodes (for efficiency and improved quality), could

also been considered as case studies [9].

In order to cope with this challenge, the work presented here

revisits the deployment of multiple random walkers given their

capability to visit fast certain network areas and (certainly)

faster than a single random walker [10], [11]. An important

characteristic of the mechanism of random walkers is its

simple implementation and its capability to cover a large

network area in a small time period, even though covering

the entire network may take too long due to the randomness

of the process.

The performance of multiple random walkers has been

investigated for various topologies (e.g., power-law, random

graphs, grids, etc., see also Section II). Nevertheless, these

topologies are not representative for the considered environ-

ment where users exploit network resources of the particular

service instantiations that are close in terms of distance. In

the sequel, geometric random graph topologies, where nodes

are connected when the euclidean distance among them is

smaller than a certain connectivity radius, are considered (due

to the characteristic of distance) [12]. Each employed random

walker starts randomly visiting its neighbor nodes attempting

to discover a certain service (e.g., a network function) in this

particular unstructured and highly dynamic environment. The

number of nodes visited, or covered by the multiple random

walkers, as well as cover time, are analytically investigated as

a function of the connectivity radius.

The main contribution of this paper is that the derived

analytical results can be applied for the general case regarding

the connectivity radius (assuming connected networks) and not

for specific instances, e.g., fully connected topologies [11]. For

example, when the requirement is to cover a certain proportion

of a specific network within a given time period, the analysis

in this paper provides for the minimum number of random

walkers that need to be employed in order to satisfy these

constraints. The agreement among the analytical results of this



paper and previous works in the literature is also investigated

here, showing that the current analysis effectively captures and

extends the previously proposed analytical models. Extensive

simulation results take place considering instances of large

networks, confirming the claims of the analysis.

In the sequel, past related works are reported in Section II,

while Section III introduces various definitions to describe

the under study problem. The proposed model is analyzed

in Section IV. The performance evaluation using simulation

results is presented in Section V and, finally, the conclusions

are drawn in Section VI.

II. PAST RELATED WORK

As early as 2012, Bonomi et al. [1] introduced the idea

of fog computing, mentioning also certain scalability issues

[13]. The case of mobile fog devices is studied by Hong et

al. [4], while the concept of nano data centers is investigated

by Valancius et al. [5]. Further information is included in

corresponding surveys, e.g., [2], while a comprehensive survey

about network functions virtualization can be found in [6].

There are many works about performance analysis of multi-

ple random walkers. In the fundamental work of [14], Lovász

presents an in-depth analysis of the properties of random

walkers. Alon et al. in [10] present a thorough study regarding

cover time, concluding that the use of many random walkers

in parallel yields a speed-up in the cover time that is linear

in the number of employed walkers. It is also shown that an

exponential speed-up is possible, even though a logarithmic

speed-up is experienced most of the times.

Avin and Ercal in [15] study covering issues for random

geometric graphs, showing that multiple random walkers are

faster than one. Cooper and Frieze study cover time on sparse

[16] and regular [17] random graphs, whereas Patel et al.

investigate hitting time for the case of multiple random walkers

[18]. A study regarding cover time of multiple random walkers

on regular random graphs [19] reaches similar conclusions

with this work that also studies multiple random walks on

random geometric graphs.

Efremenko and Reingold in [20] calculate lower and upper

bounds for cover time of multiple random walks, whereas they

study three alternatives for the starting nodes of the random

walks: the worst starting nodes (those maximizing cover time),

the best starting nodes, and starting nodes selected from the

stationary distribution. Cover time is also studied in [21] by

Elsässer and Sauerwald, with tighter bounds on the provided

speed-up over the use of a single random walker. Ivaskovic

et al. in [22] derive tighter bounds on the speed-up for cover

time in the case of d-dimensional grids.

In [23] a study by Beraldi is presented regarding random

walks with long jumps on wireless ad hoc networks. Note

that a random walk with long jumps shares similarities with

multiple random walkers. Zheng et al. in [24] present an

efficient search mechanism that employs random walkers

with self-replication technologies in order to reduce the time

delay. In addition, the case of multiple random walkers with

various replication mechanisms is analyzed on fully connected

networks by Oikonomou et al. in [11].

Cecor-Hillel et al. in [25] study methods for checking

particular graph properties. One of their proposed methods

refers to the use of multiple random walkers. In particular,

two such walkers are initiated at each node, therefore there

are 2N random walkers operating concurrently, where N

is the network size. Recently, Berenbrin et al. presented

an alternative method for realizing the concept of multiple

random walkers [26]. The underlying mechanism is related to

randomized rumor spreading and shares a lot with epidemic

spreading models. Cover time is also investigated under the

proposed scheme, showing that for any connected regular

graph the cover time is O(N logN) with high probability.

III. NETWORK AND COVERAGE DEFINITIONS

The analysis in the sequel considers a geometric random

graph [12] model as the underlying network topology. There

are N nodes, uniformly distributed on a plain area sized

[0, . . . , 1]× [0, . . . , 1], that is a unit square. Each pair of nodes

is connected if their euclidean distance is equal to or smaller

than the connectivity radius rc. Considering only connected

topologies, m random walkers start at time step t = 0 from

an arbitrarily selected node to cover the network nodes. Let

Cm(t) (to be referred to hereafter as coverage) be a stochastic

variable representing the number of nodes that have been

visited by at least one random walker after t time steps. Each

random walker independently selects a random neighbor node

in order to move at the next time step.

Assuming one random walker in the network (thus, C1(t)
nodes are covered until time step t), there is a question

regarding the relation between C1(t) and Cm(t). Motivated

by the seminal work of Alon et al. [10] that a linear speed-up

is possible in most cases as long as m is not significantly large

(i.e., of logarithmic order), it is assumed here that m random

walkers increase m times the number of covered nodes on

geometric random graphs, or,

Cm(t) = C1(mt). (1)

Simulation results in Section V support the claims of Eq. (1).

IV. ANALYSIS

Let P (rc) denote the probability for a random walker to

select a node that has not been visited during the last nine

steps, based on the calculation of the common neighborhood

of the currently visited node with the previously visited ones,

as given in [27]. i.e., P (rc) =
(

1− 2V
Nπr2

c
−1

)

, where V is a

constant ≈ 2.838. Given that coverage Cm(t) equals Cm(t−1)
plus the number of nodes that are covered by the m random

walkers at time step t,

Cm(t) = Cm(t− 1) +mP (rc)

(

N − Cm(t− 1)

N

)

= Cm(t− 1) +mP (rc)

(

1−
Cm(t− 1)

N

)

= Cm(t− 1) +mP (rc)−
mP (rc)Cm(t− 1)

N
.



Eventually, the following recursive expression of Cm(t) is

derived,

Cm(t) = mP (rc) + Cm(t− 1)
(

1−
m

N
P (rc)

)

. (2)

A. Coverage analysis

The next step is to transform this recursive expression to

a more tractable form. The solution of the simple first order

difference equation yn+1 = ayn + b for a 6= 1, i.e., yn =

any0 + b
(

a
n
−1

a−1

)

, is considered next. Thus, in the case of

Eq. (2), where a = 1− mP (rc)
N

and b = mP (rc),

Cm(t) =
(

1− m

N
P (rc)

)t
+mP (rc)

(

(1−m

N
P (rc))

t
−1

1−m

N
P (rc)−1

)

=
(

1− m

N
P (rc)

)t
+N

(

1−
(

1− m

N
P (rc)

)t
)

.

Finally, coverage of Cm(t) is given by,

Cm(t) = N − (N − 1)
(

1−
m

N
P (rc)

)t

. (3)

B. Model equivalence

It has been shown in the literature [11] that for the case of

a fully connected network and a large number of nodes N ,

Cm(t) = N
(

1− e−
mt

N

)

. (4)

The next step is to show that coverage as given by the model

introduced here, i.e., Eq. (3), reduces to the model presented

in [11], i.e., Eq. (4), for fully connected graphs. In particular,

when the connectivity radius rc is so large that the network

is fully connected, then the number of neighbor nodes ≈ N .

Assuming a large N , then N ≈ N − 1 and Prc ≈ 1 [27].

Eventually, Eq. (3) is written as,

Cm(t) = N

(

1−
(

1−
m

N

)t
)

. (5)

It is enough to show that for large values of N ,
(

1− m

N

)t
=

e−
mt

N , or, ln
(

1− m

N

)t
= ln

(

e−
mt

N

)

, or, t ln
(

1− m

N

)

=

−mt

N
, or, ln

(

1− m

N

)

= −m

N
, or,

ln(1−m

N )
m

N

= −1. For

simplicity, let x = m

N
. Obviously, as N takes large val-

ues, x converges to 0. Therefore, it suffices to show that

limx→0
ln(1−x)

x
= −1. It is trivial to show the latter

expression using L’Hôspital’s rule, i.e., limx→0
ln(1−x)

x
=

limx→0
ln(1−x)′

x′
= limx→0 −

1

1−x

1 = −1.

C. Minimum number of random walkers

From an implementation point of view, in the considered fog

computing environment, it is of practical importance to have

prior knowledge of the minimum number of random walkers

m that need to start moving in the network, when certain

coverage and time constraints are given. From Eq. (3), it is

possible to calculate the minimum number of required random

walkers in order to achieve a network coverage fraction k

within a specific amount of time T . Substitution of Cm(T ) =
kT in Eq. (3), eventually yields,

m = N
1− (1− k)

1

T

P (rc)
, (6)

assuming N ≈ N−1. It is interesting to see that as k increases,

the minimum number of required random walkers m increases.

On the other hand, as T increases, m decreases and for T →
+∞ (i.e., no constraints at all), then m → 0.

V. SIMULATIONS

In this section, simulation results are presented, demon-

strating the fact that the proposed analytic model of multiple

random walkers captures the system’s behavior. A program

is developed in Python 3.6.3, using the SciPy and NumPy

libraries. Randomness is generated by the random number

generator of Scipy (i.e., the Mersenne Twister pseudo-random

number generator) using different seeds for each run.

Geometric random graph [12] topologies are considered

with 104 nodes. All topologies range from marginally con-

nected (i.e., rc = 0.017) to rather dense networks (i.e.,

rc = 0.100). Marginally connected networks are those which

consist of only one component, although a slight decrease of

the value of the connectivity radius rc would lead to more than

one component. Eventually, 18 different network configura-

tions are constructed with rc = [0.017, 0.020, 0.025, ..., 0.100].
For each network, m = [1, 2, 3, 5, 10, 20] random walkers

are employed and for each value of m the presented results

correspond to average values of ten independent runs.

A. Single vs. multiple random walkers
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Fig. 1. Coverage for networks with rc = 0.060, m = 1, 10 random walkers.
C1(10t) is also depicted.

Simulation results are used to demonstrate the effectiveness

of the assumption behind Eq. (1). Fig. 1 depicts coverage for

1 and 10 random walkers in networks with connectivity radius

rc = 0.060 and the assumption that C10(t) = C1(10t). It is

obvious that the depicted simulation results are in accordance

with Eq. (1) in the sense that ten random walker covers ten

times the same number of nodes when compared to a single

random walker for the same period of time.
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B. Coverage

The next step is to demonstrate that Eq. (3) successfully

captures the evolution of network coverage as a function

of time. Fig. 2 depicts both analytic and simulation results

regarding coverage for 2, 5, 10 and 20 random walkers

employed in networks with rc = 0.060. As expected, the more

the number of random walkers, the greater the coverage. In

all cases the analytical results (dense lines) are in accordance

with the results of the simulations (dotted lines).

C. Minimum number of random walkers
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Fig. 3. Minimum number of required random walkers (m) for coverage

fraction k = 0.6, 0.7, 0.8 for network topologies with rc = 0.060 as a
function of time period T .

The minimum number m of required random walkers to

achieve coverage fraction k within T time steps is given by

Equation (6). So, k, t, rc, N are given as input to Eq. (6) and

the suggested number of random walkers m is calculated for

each case, given the time period T . In Fig. 3 the resulting

minimum number of random walkers for both analysis and

simulations, along with closeness is demonstrated for these

cases. The largest deviation between analytic and simulation

results is observed for marginally connected networks (rc =
0.017) and it corresponds to one random walker.

D. Cover time

Cover time is defined as the number of steps required for

m random walkers to cover the network. As already shown

in this work, the employment of multiple random walkers

accelerates network coverage (see Eq. (1)). Fig. 4 depicts both

analytic and simulation results as a function of the number

of random walkers m for six different network topologies

with rc ranging from 0.017 (marginally connected) to 0.100
(dense network). The analytic results correspond to coverage

for one random walker (i.e., C1(t)) at time mt. Eventually, the

comparison illustrated in Fig. 4 confirms again the validity of

the assumption of Eq. (1), since for all depicted cases, it is

observed that both simulation and analytical results are close.

It is also noticed that as m increases, cover time decreases.

Furthermore, as rc increases, it is also evident that cover time

decreases. This is expected, since as topologies become dense

(i.e., rc increases), a random walker is less likely to revisit the

same network areas due to possible bottleneck links.

VI. CONCLUSIONS AND FUTURE WORK

Fog computing has emerged as a new distributed paradigm

that acts as an intermediate layer between cloud data cen-

ters and user devices, offering various services. This new

networking environment calls for new, efficient methods in

order to leverage the capabilities it offers. In this direc-

tion, traditional approaches such as multiple random walkers

were reconsidered and re-examined under the prism of fog

computing, regarding coverage, service discovery (e.g., for

virtual network functions) and information dissemination. In

this work, multiple random walkers were employed in order

to analytically investigate network coverage,while the equiv-

alence to previous analytical models was also studied. The

minimum number of random walkers required in order to

satisfy certain coverage time constraints was also analytically

derived. The results of the analysis were evaluated using

simulations and it was shown that the analysis effectively

captures the multiple random walkers behavior. It is left for

future work to consider more realistic environments (e.g.,

traces from fog computing network topologies) in order to

further demonstrate the applicability and effectiveness of the

work presented here.
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