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Abstract— Sensor network lifetime suffers from in-
creased energy consumption especially for those nodes in
close proximity to the sink node that undertake rather
the role of forwarding other nodes’ data packets than
their own. In this paper, a space-time analytical model is
proposed to characterize the energy consumed in a sensor
network under a rather simple medium access control pol-
icy. The proposed analytical model is studied and analyzed
in this work revealing a phase transition phenomenon as the
offered traffic load increases. Simulation results presented
here are in compliance with the aforementioned analytical
results.

I. INTRODUCTION

Sensor networks are composed of a number of small
and comparably cheap devices, capable of sensing, com-
puting and communicating, scattered in large numbers in
certain areas of interest, [1]. There are numerous appli-
cations for sensor networks: fire detectors (e.g., inside
buildings or in forest areas), nutrition level monitoring
in agricultural fields, etc. Sensor networks are considered
to be stationary (even though this is not mandatory), at
least after their deployment. The deployment of sensors
in an area of interest can be fixed when each node takes
a predefined position (e.g., a fire detector in a building)
or it can random when there is no predefined nodes
positions.

After the deployment of a sensor network, nodes
start sensing their surrounding environment. In case of
a particular event of interest, the corresponding sensed
information is conveyed to the sink node (the collector
of information in sensor networks) over a multihop
communication path composed of intermediate sensor
nodes (i.e., nodes between the source node and sink
node).

It is assumed that sensor nodes use omni-directional
antennas and not any other sophisticated modern technol-
ogy (e.g., antenna arrays, MIMO), due to the necessity
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for the devices to remain small and cheap. Consequently,
when a node transmits towards a neighbor node, the
particular transmission may interfere with the transmis-
sions of other nodes in the area resulting in a number
of corrupted transmissions. If the rate according which
data are sensed/generated in the network (i.e., the load
of the network) is small, then data are expected to arrive
at their final destination (i.e., the sink node) with a
small probability to interfere with neighbor nodes. As the
load of the network increases, some transmissions from
neighbor nodes may take place simultaneously resulting
in corrupted transmissions.

The avoidance of corrupted transmissions and incre-
ment of successful ones per time unit, is the main objec-
tive of most Medium Access Control (MAC) protocols
proposed in the area of wireless networks (e.g., local area
networks, ad hoc networks, sensor networks). In sensor
networks, however, it is also important to suppress the
number of corrupted transmissions due to certain energy
consumption limitations. In particular, sensor nodes are
usually equiped with a small battery that it may not
be recharged at all (e.g., when nodes are scattered in
a forest area). Therefore, it is important for the available
energy to be used as efficiently as possible. Note that
apart from transmission events, energy is also consumed
for sensing, computing and receiving, [1], [2]. For the
rest of this work, the focus is on the energy consumed
during transmissions.

Several MAC protocols have been introduced in the
area of wireless networks in an attempt to reduce the
consumed energy. PAMAS, [4], refines mechanisms of
the IEEE 802.11, [5], protocol to avoid interfering with
other nodes in the network. Picoradio, [6], [7], allows
data to be sent when the receiver is enabled, after a
message over a special low power wakeup channel. S-
MAC, [8], is a protocol addressing energy consumption
issues in sensor networks. It allows for neighbor nodes
to enter a sleep mode of operation when there is an on-
going transmission in the neighborhood and based on a
simple scheduling algorithm it synchronizes the wakeup



ans sleep modes of operation. STEM, [9], [10], is another
protocol proposed in this area and utilizes a two-radio
architecture for the efficient synchronization of the node
wakeup and sleep modes of operation.

TDMA-based access schemes are also possible to be
used to schedule transmissions in sensor networks. Under
these schemes, nodes are assigned a certain time slot
set for transmission purposes and be allowed to use the
remaining time slots for entering the sleep mode. The
problem is the particular assignment of the time slots to
the node, [11], [12], even though topology-transparent
MAC approaches could be used, [13], [14].

Even though there are many attempts for energy
consumption minimization proposing a certain, for each
case, MAC protocol, most of the researchers do not put
any real attention on the modelling, of the transmission
attempts (or, equivalently, the energy consumed during
transmissions) in a sensor network, apart from [3] where
an effort to analytically model the hole phenomenon
(battery exhaustion for those nodes nearby the sink node)
and [15] for a unitary disk. The aim of this paper
is to proceed further by introducing a different and
more generic analytical model that sheds light to certain
aspects of the sensor network behavior. For example,
it is a common belief that nodes near the sink node
consume energy faster than other nodes due to the burden
of relaying the information that of other nodes. Even
though this is true in most of the cases, there are some
exceptional cases that this is not valid, depending on the
particular MAC protocol that is considered.

Our aim in this paper is to derive an analytical model
for a sensor network, capable of capturing all different
operational behaviors. Actually, as it is also shown, a
sensor network is in a desired state of operation (i.e.,
most of the transmissions are succesful) for small values
of the traffic load. However, there is a certain small
range of values for the offered load (corresponding to
a transient state of operation), above which transmission
corruption is frequent resulting in energy consumption
with no advantage since the throughput (i.e., number
of successful transmission per slot for each node) drops
dramatically.

The proposed analytical model follows new ideas and
practices emerging in the literature (in many other fields
i.e. materials science, [17]) which concerns multiscale
dynamic modeling of complex systems. By the term
complex systems we mean systems where their evolution
in time is governed by the multiple (sort or long range)
interactions between many single units (here among
emitted nodes). As a result a variety of possible spatial

and temporal phenomena may arise, e.g., instabilities,
critical phenomena, phase transformation and pattern
formation.

The existence of sort or/and long range interactions
between units drives the system in different behavior in
different length scales. In a microscale, single behavior
of any unit must be considered. While this kind of de-
scription is always accurate and take into account all pos-
sible interactions, in practice leads to unsolved problems
due to the inherent randomness emerging in microscale.
On the other hand, novel theories emerged in the liter-
ature, where deterministic system description proposed
in a scale above, the mesoscale, by using appropriate
averaging procedures of microscale randomness. As a
result accurate knowledge of the underlying microsys-
tem is sacrificed in order to capture main features of
system behavior in macroscale, which most of the time
is the desired outcome. Such phenomenon may be the
phase transformation of network performance in space in
relation of the emission mechanism (protocol) applying
in microscale and load performance. To this end, we
propose an appropriate deterministic evolution equation
for the information density per node in mesoscale where
the corresponding terms are extracted by considering
explicit interactions taking place in the microscale. Even
in this simplest form, we will demonstrate that the model
is able to describe the network performance in time and
space. In particular, for appropriate model parameters
it is possible to predict localized or periodic solutions
in macroscale as the value of network load increases
leading thus to a phase transformation.

The employed MAC protocol is a rather simple one
(actually all nodes are allowed to transmit during a
time slot when there are data available for transmission).
Furthermore, the considered network topology is actually
a line, where the sink node is located at the one end.
Generalization to more dimensions is straightforward.
Both the aforementioned assumptions are made in order
to simplify the analytical model and allow for its sub-
sequent analysis. Simulation results are also presented
in this paper and it was possible to observe the phase
transformation phenomenon and identify the particular
value for which the phenomenon takes place. As it is
shown here, the proposed analytical model efficiently
captures the system behavior revealed by the simulation
results.

In Section II the system is described as well as the
assumptions made in this paper. In Section III, the
analytical model is presented and in Section IV it also
analyzed. The simulation results are included in Section



V and the conclusions as drawn in Section VI.

II. SYSTEM AND ASSUMPTIONS

A sensor network may be viewed as a time varying
multihop network and may be described in terms of a
graph G(V,E), where V denotes the set of nodes and
E the set of (bidirectional) links between the nodes at
a given time instance. Let |X| denote the number of
elements in set X and let N = |V | denote the number of
nodes in the network. Let Su denote the set of neighbors
of node u, u ∈ V . Let D denote the maximum number
of neighbors for a node; clearly |Su| ≤ D, ∀u ∈ V . Set
Su includes any node v to which a direct transmission
from node u (transmission u → v) is possible. Let p
be the probability that there exist data available for
transmission during a time slot for any node in the
network.

u υ

υ→u

υS∈ υ→Θ∈ u

υ→Φ∈ u

χ
ψ

Fig. 1. Example transmission u → v, set of nodes Sv and
transmissions that belong in Φu→v or Θu→v.

Suppose that node u wants to transmit to node v
during a particular time slot i. Transmission u → v
may be corrupted by any node that belongs to Sv

(apart from node u). However, transmissions that corrupt
transmission u → v may (set Φu→v) or may not (set
Θu→v) be corrupted by it, as it is graphically depicted
in Figure 1.

Φu→v =
{
χ→ ψ : χ ∈ Sv ∪ {v} − {u},

ψ ∈ Sχ ∩ (Su ∪ {u})
}
, (1)

Θu→v =
{
χ→ ψ : χ ∈ Sv ∪ {v} − {u},

ψ ∈ Sχ − (Sχ ∩ (Su ∪ {u}))
}
. (2)

It is common in sensor networks to assume that
nodes are uniformly distributed in the area of interest.
Consequently, |Sv| is almost the same for all nodes in
the network. This is a rather useful assumption since it
allows for a more tractable form of the problem. Even
though the aforementioned uniformity may not always
be the case, it has been shown (e.g., in [14]), that the
derived results may be used for non-uniform network,
when certain conditions are satisfied.

During a certain transmission, nodes consume energy.
If there is a corruption, it is evident that the consumed
energy was not useful since the transmission attempt has
to be repeated in a future time instance. If the corrupted
transmission caused other transmissions to be corrupted
(e.g., transmission u → v is corrupted and corrupts any
other transmission χ→ ψ ∈ Φu→v).

The MAC policy that is considered for the next of this
paper is the following simple one.

Simple Policy: A node transmits during a time slot as
long as there exist data available for transmission.

In the sequel, an analytical model is proposed consid-
ering for simplicity a line topology.

III. THE PROPOSED ANALYTICAL MODEL

In order to study the life time and energy consumption
of an arbitrary sensor network we introduce as an appro-
priate state variable (without loss of generality we study
1-D sensor network when isotropy of the network is
assumed) the information density (number of information
packets per node) of a node n that is located at distance
x from the sink node at time t.

Arbitrary node at x

Sink node

0

Fig. 2. In the 1-D network an arbitrary node n(x, t) is located at
distance x from the sink node.

According to the 1-D sensor network protocol the fol-
lowing evolution equation for the density of information
n(x, t) of an arbitrary node at location x and time t holds
(assuming continuity of the network),

ṅ(x, t) = p+ α
1

n(x, t)
n(x− r, t)

1
n(x+ r, t)

−bn(x, t)
1

n(x+ r, t)
1

n(x+ 2r, t)
, (3)



where r = |xi − xi−1| is the spatial distance between
two nodes and α, b rate constants which may depend on
sensor network parameters (like p for example). The first
term on the right hand side of Equation (3) stands for the
constant flow of information generated at the particular
node. As it was mentioned before in Section II, each
node transmits information, generated either by itself or
by other nodes, that needs to be relayed.

The second term of Equation (3) models the increase
of information density (i.e., the amount of information
due to transmissions towards the sink node) at each
node due to successful receptions from its immediate
left neighbor node, as it is the case depicted in Figure
2. This is (a) inversely proportional to the information
density at a node at distance x from the sink node (the
smaller the information density, the smaller probability
of transmission and as a result the higher the probability
of success); (b) analogous to the information density at a
node at distance x−r (the higher the information density,
the higher the probability of a successful transmission);
(c) inversely proportional to information density at a
node at distance x+r (the higher the information density,
the smaller the probability of a successful transmission
– collisions may take place due to the increased number
of simultaneous transmissions). Finally, the third term
of Equation (3) models the reduction of the information
density due to successful transmissions towards the node
on the right (see Figure 2). This is (a) analogous to
the information density at a node at distance x (the
higher the information density, the higher probability of
transmission); (b) inversely proportional to the informa-
tion density at a node at distance x + r; (c) inversely
proportional to the information density at a node at
distance x+ 2r (the higher the information density, the
smaller the probability of successful transmissions since
collisions may take place).

It should be noted that the model described above is a
first approximation regarding network performance since
the linear dependence between information density and
the probability of a successful transmission deteriorates
when the load is increased. As a result a load depen-
dence of the model parameters a, b is expected. This
point will be clarified in the next section.

Performing a Taylor expansion around x the appearing
densities in Equation (3) have in a first approximation
the following forms (for smooth spatial densities the first

spatial derivative is negligible):

n(x+ r, t) = n(x− r, t) = n(x, t) +
1
2
r2
∂2n

∂x2
,(4)

n(x+ 2r, t) = n(x, t) + 2r2
∂2n

∂x2
. (5)

Substituting in Equation (3) and using 1
1+y ≈ 1 − y,

ṅ = p+ (α− b)
1
n

+ c(n)
∂2n

∂x2
, (6)

where the abbreviation n = n(x, t) was used and the
gradient coefficient has the following form: c(n) = 5r2b

2n2 .
Equation (6) is the analytical expression for the an-

alytical model. It describes the time evolution of the
information density at an arbitrary volume element of
a wireless network. The dependence of this evolution to
the parameters of the network are explicitly considered.
This type of evolution equations is common to other
fields (e.g., see [16] in materials science) and have been
extensively studied. The main feature of these equations
is the pattern formation in space as a result of spatial
interactions between nodes. The gradient coefficient is
a measure of this interaction: The higher the value the
stronger interaction.

IV. ANALYSIS

To describe the stationary information density pattern
we study the steady-state solutions of the (evolution)
Equation (6). The steady state version (ṅ = 0) is,

c
∂2n

∂x2
= p(n), p(n) = (b− a)n− pn2. (7)

This belongs to a general class of equations, which has
been studied in detail in [16]. Three types of stationary
spatial solutions are possible: reversals, localized and
periodic solutions as depicted in Figures 3, 4 and 5. In
the present work we are mainly interested in localized,
around the sink node, and periodic solutions.

Since a simple MAC policy was adapted there is a
linear dependency between the percentage of transmis-
sion and the information density per node. Without loss
of generality unity was chosen as the corresponding
linear coefficient. For this scenario, localized solutions
are found for model parameters, p = 10−3 and b− a =
7×10−5. Far away from the sink node (i.e., the distance
→ ∞), the percentage n∞ = 5 × 10−4 is estimated.
For the sink node the corresponding nS is estimated to
be equal to nS = 0.105. For a second set of model
parameters, p = 3 × 10−3 and b − a = 6.1 × 10−4,
the corresponding percentages of transmission, n∞ =
3 × 10−3 and nS = 0.305 are estimated.
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Fig. 3. Reversal type of solutions. The state variable n reverses its
value in space, from n1 to n2.
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Fig. 4. Localized type of solutions. For law values of network load,
the state variable n exhibits a localized maximum ns around the sink
node while approaches its limited value n∞ at ±∞.

On the other hand, periodic solutions exist for all
n that are in the range where the p(n) plot exhibits
a negative slope. When integrating Equation (6) twice
gives,

x− x0 =
∫ n

n(x0)

1√
2F (u)

du, (8)

where

F (u) =
∫ n2

n1

p(u)
1
c(u)

du, (9)

and x0 is an arbitrary constant. For n ∈ [n1, n2],
Equation (8) describes a halfperiod of a periodic solution
with wavelength,

q = 2
∫ n2

n1

1√
2F (u)

du. (10)

For this scenario, periodic solutions are found for model
parameters, p = 10−3 and b − a = 7 × 10−5. Spatially,
oscillation of the percentage of transmission between
n1 = 0.0033 and n2 = 0.00345 is estimated.

As a result, the model predicts the emergence of two
types of spatial patterns of the percentage of transmission
in steady state: localized solutions with the maximum
value located at the sink node and periodic solutions

?

n

2n

1n

Fig. 5. Oscillation type of solutions. For greater values of network
load, phase transformation takes place and periodic like solutions
emerged, oscillating between successively local maximum and min-
imum state values, n1 and n2 correspondingly.

oscillating between a maximum and minimum value.
Since the proposed formalism does not provide a definite
value for the model parameters depending on specific
probabilistic laws concerning transmissions and recep-
tions between nodes, there is no clear way to predict
which of the two possible patterns would be emerged.
Intuitively, a kind of phase transformation is expected:
for increasing network load p spatial patterns switch
between localized and periodic like patterns.

While the proposed model in this initial form is not
able to describe this expected transition, the values of
the model parameters used by the proposed approach is
found to follow a parabola,

c1(p) = 10−4−0.13×p+100×p2, c1(p) = b−a. (11)

As a result the final proposed partial differential equation
for the stationary pattern of node transmissions is,

c(p)
∂2n

∂x2
= c1(p)n− pn2. (12)

V. SIMULATION RESULTS

For the simulation purposes a simulation program in
C is created. The assumed topology considers 100 nodes
in a line, the sink node being put at the end of the
line for compliance with the assumptions made under
the previously proposed analytical model. Each node is
equipped with a large queue storing data packets wait-
ing for transmission towards the sink node. Simulation
experiments have been carried out for various values of
the offered traffic load p and for 100 time slots time
duration.

Figure 6 presents simulation results regarding the
(average) transmission percentage during a time slot,
as a function of the number of hops x that a node
is located away from the sink node. For rather small
values of p there is a decrement of the transmission
percentage as x decreases (i.e., coming closer to the
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Fig. 6. Average number of transmissions (per time slot) as a function
of the number of hops (away from the sink node) for different values
of p.

sink node). This actually corresponds to the solution
of the model depicted in Figure 4. As p increases the
same shape of the corresponding curve is maintained.
However, we observe a tendency to converge towards
0.4 for x→ 1 (i.e., close to the sink node). As p slightly
increases (e.g., p = 0.0035), we observe a rather signifi-
cant improvement of the overall transmission percentage
for nodes located far away from the sink node. As x
increases we still observe the aforementioned tendency
to converge towards 0.4. As p increases further many
more nodes located away from the sink node increase
significantly their corresponded transmission percentage.
This actually is partially captured by the solution of the
model depicted in Figure 5. For example, for p = 0.004,
those nodes located 80 or more hops away from the sink
node transmit during almost every time slot. For even
higher values of p (e.g., p = 0.01), nodes located 30
or more hops away from the sink node transmit during
almost every time slot. For p = 0.01, this is the case for
almost all nodes in the network (except a few close to the
sink node). However, it is clear that the corresponding
curves more or less converge towards 0.4, for x→ 0.

This particular behavior and the observed phase trans-
formation phenomenon (i.e., that for some probability
value pC like pC = 0.0035 in Figure 6, the system
behavior radically changes), is in compliance with an-
alytical results provided in the previous section and an
indication that the proposed analytical model captures
the main aspects of the system’s behavior.

The transmission percentage, presented in Figure 6,
is of significant importance in sensor network since it
is closely related to the consumed energy. On the other
hand, it is important to observe simulation results with
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Fig. 7. Average number of transmissions (per time slot) as a function
of the number of hops (away from the sink node) for different values
of p.

respect to the (average) succesful transmission rate or
throughput. Therefore, in Figure 7 simulation results are
presented regarding the percentage of successful trans-
missions of nodes as a function of the number of hops x.
It is interesting to observe that for small values of p (e.g.,
p = 0.001), the throughput increases as x decreases. As
p increases, the depicted throughput increases as well.
This tendency to increase is maintained until p = pC

(until the phase transformation phenomenon starts). For
any offered load p > pC , the corresponded throughput
for those nodes far away from the sink node (e.g., x > 80
for p = 0.004) remains close to zero. As p increases
further (e.g., p = 0.01), the number of nodes that their
corresponded throughput is close to zero increases as
well (e.g., x > 40 for p = 0.01).

When considering the results depicted in Figure 6 and
Figure 7, it is easy to observe that for those nodes that
the transmission percentage is close to one (in Figure 6).
Clearly, this is the case where the corresponded nodes
are not able to forward their stored data packets due
to transmission collisions. Therefore, it is obvious that
the system should operate under traffic load conditions
smaller than the one corresponding to phase transforma-
tion.

VI. CONCLUSIONS

The comparison of the simulation results with the
theoretical outcomes of the proposed model is in agree-
ment with the discussion at the end of Section IV.
Indeed, phase transitions for increasing network load was
reported. For low values of the network load p, localized
spatial patterns for the percentage of transmission in
steady state were observed while for higher values of p,



oscillation patterns emerge. For even higher values of p
a new kind of spatial patterns emerge, leading the overall
network performance to saturation. This behavior implies
the existence of critical values for which the performance
of the network is drastically changed. Specifically, for
a critical value pC of the network load, switch between
localized and periodic like patterns take place. While the
proposed model is able to describe this phase transfor-
mation of the spatial pattern, there is no definite way to
estimate the critical value pC . This is an important weak-
ness of the proposed formalism and lies on the fact that
the corresponding model coefficients were introduced in
a more or less phenomenological way, i.e. there are not
yet proposed specific probabilistic laws for the rates of
emission / reception between neighbourhood nodes (e.g.
dependence on the load of the network).

Note also that spatial pattern of the percentage of
transmission as depicted from simulation results exhibit
a departure from a deterministic behaviour. This is evi-
dence mainly in the vicinity of the phase transformations
and is a well known phenomenon (observed also in
other fields) associated with critical random/stochastic
interactions between nodes. This implies the need for the
generalization of the proposed model (Equation (12)) by
the introduction of appropriate stochastic terms.

Future work in this area will focus on the elaboration
of the proposed model in order to introduce the cor-
responding model parameters with a more rigorous way
than here. We expect that this can be done either with the
introduction of specific probabilistic laws for the number
of emissions / reception between neighbourhood nodes
or by using tools developed under random graph theory.
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