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Abstract— Scalable service placement is a challenging
problem in dynamic environments such as ad hoc or
autonomic networks. Existing approaches typically con-
sider static and reduced size networking environments
and try to determine the optimal service position (the
node at which some cost is minimized) by solving the 1-
median problem. Since such approaches are complex and
are based on global information knowledge, they are non-
scalable and cannot cope with dynamic environments. A
more reasonable approach to service placement for large,
ad hoc and autonomic environments would be through
service migration. That is, instead of solving continuously
a large optimization problem requiring global information,
consider policies for moving the service position (one
hop/node at a time) based on local information, towards
more effective positions. Developing service migration poli-
cies with good properties is a major challenge, since such
policies may be sub-optimal (that is, they never converge
to the optimal position), follow a non-monotonically cost
decreasing path to the optimal position, etc.

In this paper, the aforementioned issues are discussed
and a simple service migration policy is proposed for undi-
rected tree topologies. For this case it is shown analytically
that the information available at the current service node
only is sufficient for determining the direction towards
nodes with monotonically decreasing service provision
costs. Consequently, the proposed policy moves the service
continuously towards the optimal position in every step
and reaches the optimal position through a shortest path
migration trajectory. As the optimal position may change
in a dynamic environment, the proposed policy adapts the
service migration path continuously towards the currently
optimal position. Although some of the main results are
also applicable to general network topologies, future work
will focus on the general network topology by borrowing
ideas from the current work.

Index Terms— Service, placement, migration

I. INTRODUCTION

In traditional networks service provision is typically
the responsibility of the (sub-) network owner or a well-
defined entity that owns or leases part of the needed
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infrastructure and sometimes enters in agreement with
network service providers. In such networks the location
of the service provision is dictated by ownership limita-
tions. The globalization of the Internet and the expansion
of the service demand profiles have necessitated the
careful selection of the location of the service, as well
as the replication of the service provision points. The
objective being, to bring the service provision points
(referred to here as service nodes) close to the demand
in order to minimize communication resource consump-
tion and enhance the Quality of Service (QoS) of the
provided service. The problem of service placement
has received some attention in the aforementioned tra-
ditional networking environment, for example, in the
context of content placement and replication in Content
Distribution Networks, [1]. This problem is typically
addressed by invoking approaches that do not scale with
the number of services and network nodes, typically
rely on some global information knowledge in order to
provide for a solution under given (static) conditions and
cannot inherently cope with dynamic environments. As
indicated in the next paragraphs, the service generation
and provision landscape and the supporting networking
infrastructure are changing drastically in a way that the
traditional approach to service placement is non-scalable.

The first change has to do with the proliferation and
“miniaturization” of the services produced by networked
nodes. The emerging “long-tail” relation between per-
centage of content (service) produced by a certain con-
tent (service) producer reveals the fact that network
services proliferate in number and type and that most
of these services are “small” (i.e., easily produced by
small networked nodes). In addition, the technology
appears to be mature to consider service personalization
and autonomic service composition, [2], [3], which is
expected to further enhance the “miniaturization” and
proliferation of the network services.

The second change has to do with the proliferation
and “miniaturization” or the network elements, as well
as network users. The term “miniaturization” may be
used here to capture the fact that the traditionally heavy
network elements (routers) are increasingly being sup-
plemented by lighter network elements that are con-
tributed by (until recently) traditional network users;
these users are becoming powerful enough to engage
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in ad hoc networking and contribute to the networking
infrastructure. For example, the increasing contribution
to the networking infrastructure of numerous small (tra-
ditionally) user-nodes is already materializing in last-
mile networking and is expected to dominate soon (e.g.,
home owner based WLAN network service access). In
addition, numerous new small appliances are increas-
ingly being networked, contributing to the proliferation
and miniaturization of the network users. The increasing
proliferation of network infrastructure and its increasing
autonomicity and ownership diversification are the main
reasons for which a new network architecture is needed
to organize and address the efficiency and complexity
issues associated with it, [4].

The main point from the above discussion is the
proliferation of services and network nodes that calls for
approaches that scale well with the numbers; “minia-
turization” contributes to the proliferation, as well as
calls for approaches that should be distributed and
relatively light. Consequently, the traditional problem
of placing relatively few big services to one of the
few (powerful) potential service provider facilities (big
network elements) is increasingly being transformed into
a problem of placing numerous services to one of the
numerous potential service providers (network elements
and possibly service producers).

This paper focuses on the problem of determining
the optimal service placement (that is, determining the
optimal position of the service node), in the sense that
some average cost associated with the provision of
this service is minimized. When p service nodes are
considered, the optimal placement of these p service
nodes can be determined by formulating and solving a
p-median problem, [5]. The p-median problem has been
shown to be an NP -hard problem for general graphs,
[6]. For the special case of the 1-median problem and
an undirected tree topology (considered in this paper),
the number of exchanged messages remains as high as
O(N2), [6], [7], where N is the number of nodes in
the network. In most cases, apart from some heuristic
or approximation policies presented later in Section II,
the determination of the optimal service node requires
some global information of the network status (e.g., the
network topology and the service demands of all network
nodes).

In addition to the aforementioned complexity and
scalability issues associated with the solution to the 1-
median problem, such approaches become prohibitive
in dynamic environments where a repeated application
of the approach and continuous dissemination of global
status information would be required, to continuously
determine the updated optimal service node location. For
such dynamic environments, one could either incur the
cost of determining the optimal position continuously

at predefined periodic intervals, or implement (typically
complex) mechanisms for detecting when the optimal
service node position is not valid any more and de-
termine the new optimal service node position. In any
case, the cost is heavy and the effectiveness of these
approaches questionable (i.e., likelihood to be actually
providing the service when requested from the optimal
location may not be high).

Since such (traditional) approaches are complex and
are based on global information availability, they are
non-scalable for networking environments supporting
numerous services, service users and network elements,
which are also expected to be fairly dynamic.

A more reasonable approach to service placement
for large, ad hoc and autonomic environments would
be through service migration. That is, instead of solv-
ing continuously a large optimization problem requiring
global information, consider policies for moving the
service position (one hop/node at a time) based on local
information, towards more effective positions, [8]. De-
veloping service migration policies with good properties
is a major challenge, since such policies may be sub-
optimal (that is, they never converge to the optimal
position), follow a non-monotonically cost decreasing
path to the optimal position, etc.

In this paper, a simple migration policy is proposed for
undirected tree topologies. It is shown analytically that
the information available at the current service node only
is sufficient for determining the direction towards nodes
with monotonically decreasing cost provision costs, and
eventually, the optimal service node.

The service node needs to simply monitor the ag-
gregate amount of data exchanged through its neighbor
nodes associated with the particular service, and decide
on the service movement based exclusively on the in-
formation gathered through the monitoring process. An
important result derived in this paper shows that this
information is adequate in order for the service to move
towards the optimal service node. It is also proved that
under the proposed policy the service is finally moved
to the optimal service node and remains there as long as
the network status does not change significantly; minor
changes typically do not result in a new optimal service
node position). When major changes occur, the service
eventually moves towards the new optimal service node
position.

Based on analytic studies it is shown that the proposed
policy: (a) Moves the service to the optimal position
when there are no changes to the network status and
service demand profiles (i.e., it is efficient in a static
environment); (b) Adapts dynamically to changes to the
network status and service demand profiles (i.e., it is effi-
cient in a dynamic environment); (c) It is scalable; (d) It
has low complexity (no additional message exchanges).
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Consequently, the proposed policy presents better char-
acteristics than existing (and static) approaches in the
area (e.g. [6], [7]).

Section II overviews the p-median problem and
presents past related work in the area. Section III
presents a detailed description of the network model used
throughout this paper. The key contributions of this paper
are included in Section IV. A theorem presented therein
shows that the difference in the servise provision cost
when the service node is placed in two neighbour nodes
does not depend on the weights (costs for using) of all
the links in the network but only on the weight of the link
among them; in addition, knowledge of the aggregate
service demands at a particular node is sufficient to
determine whether there exist a neighbor node with lower
service provision cost. The aforementioned observations
serve as the motivation behind the service migration
policy proposed in Section IV as well. Analytical results
are presented in Section V. It is shown that the direc-
tion of the movement is unique and that it follows a
monotonically cost decreasing path towards the optimal
service node position. Eventually, the service arrives at
the optimal service node and remains there for as long
as it remains the optimal one. When the network status
changes, the service is able to move towards the new
optimal location, irrespectively of its current position
in the network. In Section VI some practical issues are
considered. The conclusions are drawn in Section VII.

II. THE p-MEDIAN PROBLEM

Suppose that the network topology is represented by
an undirected graph G(V,E), where V is the set of nodes
and E the set of links among them. Let Sv denote the
set of nodes that have a direct link with node v. Let the
edges of the graph be assigned a positive integer referred
to as weight. Let du,v denote the distance between node
u and node v, corresponding to the summation of the
weights along a shortest path among the two nodes (for
the same node dv,v = 0). Alternatively, du,v denotes the
traveling cost between node u and node v.

Let λv denote the rate at which data packets are
transferred through the network between node v and the
service node for the particular service: λv will be referred
to as the service demands of node v. Let Xp be the set
of p nodes at which the service is located. That is, it
is assumed that there are p nodes which are capable of
providing a given service. For a given placement Xp

of these nodes and assuming that the cost of service
provision is directly proportional to the amount of data
transferred per unit time (λv) and the distance travelled
(du,v), the total cost of service provision, C(Xp), is given
by, ∀Xp ∈ Xp,

C(Xp) =
∑
∀v∈V

λv min
u∈Xp

{dv,u : u ∈ Xp}, (1)

where Xp is the set of all possible p-placements, [5].
The solution of the p-median problem amounts to deter-
mining the placement Xp such that C(Xp) is minimized.
Figure 1 depicts a graphical representation of a 2-median
problem (the service is located at nodes y and δ denoted
by the dotted ellipses).
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Fig. 1. Example of a 2-median problem for a general network
topology.

It has been proved by Kariv and Hikimi, [6], that
the p-median problem is NP -hard for the general di-
rected graph. For the case of undirected trees they have
also proved that the problem has O(p2N2) complexity;
Tamir, [7], more recently has reduced this complexity to
O(pN2). There is also considerable work in the area of
approximation algorithms and heuristics, [9], [10], [11],
[12], that try to reduce further the complexity of the
problem. More recent work in the area can be found
in [13], [1], however, a complete list of past work on
the p-median problem is hard to compile since this has
been an active research area for many decades with
applications in communication networks, engineering,
computer science, economics, etc. The interested reader
is advised to have a look at reference [5] for further past
related work.

III. SYSTEM DESCRIPTION

In every communication network it is the responsi-
bility of the employed routing protocol to provide for
the efficient forwarding of the data packets. In this
paper, it will be assumed that the routing protocol is
capable of delivering data packets along a shortest path.
Consequently, for a certain destination node, a minimum
spanning tree can be constructed rooted at the particular
node, [14]. An example is depicted graphically in Figure
2, with respect to the network of Figure 1. Assuming
that there is only one service in the network (1-median
problem) located at node y, it is evident that various data
packets from the nodes will arrive at node y along the
shortest path (indicated in Figure 2.a as dense lines). It
can be observed that a tree topology is created (dense
lines). The same applies for the case of node z as
the service node depicted in Figure 2.b. However, for
this case the corresponding minimum spanning tree is
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different than that depicted in Figure 2.a (e.g. the link
among node θ and node δ).
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a. Service at node y. b. Service at node z.

Fig. 2. Data packets are forwarded in a network towards their
destination along a shortest path.

From the previous discussion it is evident that the
study of tree topologies is quite relevant in networking
environments, [14]. Many of the results presented in this
paper refer to such topologies and can be the basis for
further investigations regarding more general network
topologies. For the rest of this paper, all mentioned
topologies will be undirected and symmetrical (when a
direct link of some weight exists between node x and
node y then a direct link of the same weight exists
between node y and node x).

Let treeu
v denote the set of nodes of the subtree

below node v (including node v) for some ancestor node
u; node u is an ancestor of node v and node v is a
descendant of node u. Clearly, treeui

v = tree
uj
v , for all

nodes ui, uj , that are ancestors of node v; the exponent
basically indicates that the particular node is not part of
the subtree rooted at node v.

u vvud ,

v
utree

u
vtree

iu

ju

Fig. 3. Example for sets treev
u and treeu

v when u ∈ Sv . For the
former case, node v is an ancestor of node u, while for the latter case,
node u is an ancestor of node v. Note that treeui

v = tree
uj
v = treeu

v .

For the special case that node u and node v are
neighbor nodes (u ∈ Sv),

V = treev
u ∪ treeu

v . (2)

Notice that treeu
v does not imply that node u is

necessarily a neighbor node of v. Node u is an ancestor
of node v and not necessarily a parent, just like node
v is a descendant of node u but not necessarily a child.
The definition of the aforementioned treeu

v facilitates the

description of the aggregate service demands generated
from nodes v and below in the tree. Consider, for
example, that u is the service node. The data packets
will travel over the branches of a (minimum spanning)
tree for which node u is the root. For this case, node v
is a descendant of node u and all descendants of node v
belong in treeu

v . It is important to note that data packets
exchanged between the service node u and any node
x ∈ treeu

v , will be forwarded through node v. Eventually,
v is the node that forwards the aggregate amount of
data for all nodes x ∈ treeu

v towards their destinations
(either node u or node x). Given that λx corresponds
to the service demands of node x, the aggregate service
demands of those nodes belonging to treeu

v , denoted by
Λu

v , is given by,

Λu
v =

∑
∀x∈treeu

v

λx. (3)

An example case for a service node y is depicted in
Figure 4.

y z

z
y

y
z

Fig. 4. The double dense arrows denote aggregate service demands
for a particular link. The dotted arrows point to the links that their
aggregate service demands correspond to Λz

y and Λy
z . Note that λy

is included in Λz
y , since y ∈ treez

y.

In order to simplify the notations, for the particular
case of the 1-median problem, Equation (1) can be
written in the following form, where u denotes the node
that is assumed to be the service node.

Cu =
∑
∀v∈V

λvdv,u. (4)

The solution to the resulting 1-median problem amounts
to determining the node u that minimizes Cu. Let
uopt denote that node that minimizes the mean cost of
servicing demands in V .

IV. THE PROPOSED POLICY

The service migration philosophy, as it was briefly
described earlier in Section I, is based on a per hop
movement of the service in the network. A simple policy,
that is in line with this philosophy, is proposed in this
section. The following theorem is useful.



5

Theorem 1: Considering nodes y and z as service
nodes, with z ∈ Sy, the difference between the costs,
Cy , and Cz , is given by,

Cz − Cy =
(
Λz

y − Λy
z

)
dy,z. (5)

Proof: Since nodes y and z are neighbors, V =
treey

z ∪ treez
y (see Equation (2)). Consequently, the

corresponding costs of locating the service at node
z or y (see Equation (4)) are given by, Cz =∑

∀v∈V λvdv,z =
∑

∀v∈treey
z
λvdv,z +

∑
∀v∈treez

y
λvdv,z

and Cy =
∑

∀v∈V λvdv,y =
∑

∀v∈treez
y
λvdv,y +∑

∀v∈treey
z
λvdv,y .

Since, dv,z = dv,y + dy,z , ∀v ∈ treez
y, Cz can

be rewritten as follows, Cz =
∑

∀v∈treey
z
λvdv,z +∑

∀v∈treez
y
λvdv,y +

∑
∀v∈treez

y
λvdy,z . Since, dv,y =

dv,z + dy,z , ∀v ∈ treey
z , Cy can be rewritten as fol-

lows, Cy =
∑

∀v∈treez
y
λvdv,y +

∑
∀v∈treey

z
λvdv,z +∑

∀v∈treey
z
λvdy,z .

From the above and in view of Equation (3), it is
easily derived that, Cz − Cy =

∑
∀v∈treez

y
λvdy,z −∑

∀v∈treey
z
λvdy,z = Λz

ydy,z − Λy
zdy,z =

(
Λz

y − Λy
z

)
dy,z .

In view of Equation (5) two interesting observations
are possible regarding the difference of the cost when
the service is located at neighbor nodes. First, the
difference does not depend on the weights of the links
of the network apart from the weight of the link among
them, dy,z . Second, it depends on the difference of the
aggregate service demands.

Consequently, it is evident from Equation (5) that
global knowledge of the network (i.e. knowledge of
the weights of each link and the service demands of
each node in the network) is not necessary in order to
determine differences in costs associated with neighbor-
ing service nodes and, eventually, determine the service
node that induces the lowest cost among neighboring
nodes. Even knowledge of dy,z is not necessary, as it
is shown later in Lemma 1. What is actually required
is information regarding the aggregate service demands
(e.g., Λz

y , Λy
z) at the service node (e.g., node y). Note

that the aggregate service demands at a service node,
say Λz

y and Λy
z for service node y, can be estimated

by employing a statistical monitoring process at node y.
The estimation is facilitated by the fact that it is applied
to aggregate service demands, as it is presented later in
Section VI. An example regarding Λz

y and Λy
z is depicted

in Figure 4.
Lemma 1: Cz < Cy for z ∈ Sy, iff Λz

y < Λy
z .

The proof is trivial in view of Equation (5) and the fact
that dy,z > 0, when y �= z.

The proposed Service Migration Policy: The service
is moved from node y to the neighbor node z, z ∈ Sy ,
iff Λz

y < Λy
z .

According to the proposed policy and in view of
Lemma 1, it is easy to conclude that every movement
of the service results in cost reduction. In addition, the
proposed policy is of low complexity in the sense that
no message exchanges are required among the nodes in
the network for the purpose of implementing the policy
(it is exclusively based on information available at the
service node).

It is important to emphasize at this point that the
proposed policy is capable of achieving cost reduction
for a general network topology and not only for the case
of a tree that is considered here. In particular, for a
general topology data packets are forwarded towards the
service node y through a certain minimum spanning tree
(determined by an underlying routing protocol) where
node y is the root; let MST y denote such a minimum
spanning tree. If z ∈ Sy in MST y (i.e., node z is a
neighbor of node y in MST y) and Λz

y < Λy
z , then

according to the proposed policy the service is moved
to node z. In the sequel, it is shown that moving the
service from node y to node z indeed reduces the cost
in general topologies as well.

Suppose that the service is moved from node y to
node z as indicated above. The cost of providing service
from node z is shaped by the distances between the
nodes of the network and node z, according to MST z.
If MST z ≡ MST y (i.e., data packets are forwarded
along the branches of the same tree no matter whether
the service is located at node y or z), then Lemma 1
holds for this common tree and the cost is indeed reduced
(Cz < Cy). As it is shown in [14], there always exists
a unique minimum spanning tree as long as the weights
of the links are distinct.

However, if MST z �= MST y (see, e.g., Figure
2), MST z will contain by definition shorter or equal
distances between the network nodes and node z, than
in MST y. Therefore, the actual cost of service from
node z and according to MST z (�= MST y), say C ′

z,
cannot exceed the cost of serving from node z and
according to MST y (Cz); i.e., C ′

z ≤ Cz . Since Cz < Cy

and C ′
z ≤ Cz , it is concluded that C ′

z < Cy when
MST z �= MST y. Thus, the proposed policy indeed
moves the service towards lower costs in a general
network topology.

In view of the above discussion, it is concluded that for
general topologies the proposed policy moves the service
to a neighbor node that can provide the service at a lower
cost. While the selected neighbor node is the one with
the lowest service provision cost among all neighbors
in the undirected tree topologies, thus may not be the
case in general network topologies. In general network
topologies lower costs may be actually achieved by a
new service node if the associated minimum spanning
tree differs from that of the original service node.
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V. ANALYSIS

It is important to prove that, when the proposed policy
is employed, the service (a) is finally located at the
optimal service node, thus achieving cost minimization
and not only cost reduction; (b) stays at the optimal
service node as long as the network status does not
change. The latter is shown in the following lemma.

Lemma 2: If the service is located at the optimal
service node, then it is not moved to any other node.
The proof is trivial considering Lemma 1 and the fact
that Cz > Cy , ∀y ∈ Sz.

In order to prove that in a static environment the
service arrives at the optimal service node, it is important
to prove previously the uniqueness of the direction of the
service movement.

Theorem 2: For any service node there is at most one
neighbor node z, z ∈ Sy, such that Cy > Cz.

Proof: If node z is the only neighbor of the service
node y (|Sy| = 1), the proof is trivial.

Consider now the case where |Sy| ≥ 2. Let node z ∈
Sy be such that Cz < Cy. Let node θ ∈ Sy − {z}. It
is sufficient to show that Cy < Cθ. Let K be the set
of nodes, K = Sy − {z} − {θ}. Obviously, |K| ≥ 0,
depending on the number of neighbor nodes of node y.

From Figure 5, it is possible to observe that treez
y =

treez
θ ∪∀k∈K treez

k ∪ {y} and treez
θ = treey

θ . From the
previous and according to Equation (3), Λz

y = Λy
θ +∑

∀k∈K Λz
k +λy. The same way, from Figure 5, it is pos-

sible to observe that treeθ
y = treeθ

z∪∀k∈Ktreez
k∪{y} and

treeθ
z = treey

z . Accordingly, Λθ
y = Λy

z +
∑

∀k∈K Λz
k+λy .

By summing up the former expressions for Λz
y and Λθ

y ,
the following is obtained: Λz

y+Λθ
y = Λy

θ+2
∑

∀k∈K Λz
k+

2λy +Λy
z , or Λz

y −Λy
z = Λy

θ −Λθ
y +2

(∑
∀k∈K Λz

k + λy

)
.

Since, Cy > Cz it is concluded from Lemma 1
that Λz

y < Λy
z , or Λz

y − Λy
z < 0. Consequently,

Λy
θ − Λθ

y + 2
(∑

∀k∈K Λz
k + λy

)
< 0, or Λy

θ +
2
(∑

∀k∈K Λz
k + λy

)
< Λθ

y. Given that
∑

∀k∈K Λz
k +

λy ≥ 0, Λy
θ < Λθ

y. Finally, from Lemma 1, it is
concluded that Cθ > Cy and the proof is completed.

y
z

z
k

Kk
tree

zy treetree
z

y
z treetree

Fig. 5. Sets treey
θ , treey

z and treez
k, ∀k ∈ K.

Theorem 2 is useful for the next step. That is, to
prove that irrespectively of the current service node,
the service will, eventually, arrive at the optimal service
node. Lemma 2 ensures the fact that it will stop moving
at the optimal service node.

Theorem 3: The service eventually arrives at the op-
timal service node, when it is moved in the network
according to the proposed Service Migration Policy.

Proof: It is sufficient to show that the service will
move along a path of monotonically decreasing cost and
that the node at the end of the path is the optimal service
node.

Suppose that a particular node v is located H hops
away from the optimal service node uopt. Let h0 denote
node uopt, h1 the neighbor node of uopt along the path
towards node v, h2 the next one, . . . , until node hH that
is identical to node v (see also Figure 6).

According to Equation (5),

Ch1 − Ch0 =
(
Λh1

h0
− Λh0

h1

)
dh0,h1

Ch2 − Ch1 =
(
Λh2

h1
− Λh1

h2

)
dh1,h2

...
...

ChH−1 − ChH−2 =
(
ΛhH−1

hH−2
− ΛhH−2

hH−1

)
dhH−2,hH−1

ChH
− ChH−1 =

(
ΛhH

hH−1
− ΛhH−1

hH

)
dhH−1,hH

By summing up the previous equations,

ChH
− Ch0 =

H∑
i=1

(
Λhi

hi−1
− Λhi−1

hi

)
dhi−1,hi

, (6)

were hH = v and h0 = uopt.
It can be observed from Figure 6 that |treehi

hi−1
|

increases as i increases. In particular, for i1 < i2,
tree

hi1
hi1−1

⊂ tree
hi2
hi2−1

. On the other hand, |treehi−1

hi
|

decreases as i increases (tree
hi2−1

hi2
⊂ tree

hi1−1

hi1
). Eventu-

ally, Λhi

hi−1
increases and Λhi−1

hi
decreases as i increases.

Consequently, Λhi

hi−1
− Λhi−1

hi
increases as i increases.

Given the fact that for i = 1, Λh1
h0

− Λh0
h1

= Λh1
uopt

−
Λuopt

h1
, according to Lemma 1, Λh1

uopt
− Λuopt

h1
> 0.

Therefore, Λhi

hi−1
− Λhi−1

hi
> 0, for any i. Consequently,

it is concluded that the cost along a path from any
node in the network towards the optimal service node, is
monotonically decreasing. Given that Λhi

hi−1
−Λhi−1

hi
> 0

and based on Lemma 1, Theorem 2 and the description
of the proposed policy, it is evident that the service will
always move from node hi to node hi−1. Eventually, it
will arrive at node h0, which is the optimal service node
uopt.

The previous analytical results have shown the effi-
ciency of the proposed service migration policy for a
static environment. The fact that under the proposed
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policy the service is gradually moved in the network
allows for certain changes of the network status to be
taken into account, thus adapting the direction of the
service movement towards a new optimal service node,
whenever it is required. Consequently, the proposed
policy is suitable for dynamic environments as well.

VI. SOME PRACTICAL CONSIDERATIONS

In this section some practical issues are discussed and
some ideas as to how to cope with them are presented.

The proposed Service Migration Policy - as it was
presented so far - assumes that the service moves from
node to node until it reaches the optimal service position.
However, there might be networks that this is not realistic
either due to a certain “cost” to install the service to a
new node or due to the fact that some nodes may not be
suitable for hosting the service (e.g. limited processing
power, physical memory, bandwidth, etc.). Given the
aforementioned limitations, may be the only feasible
approach could be to move the service only once in order
to place it at the optimal service node (assuming that the
latter is suitable to host the service).

Under the aforementioned constraints, an alternative
approach that can be considered is to move not the
actual service but a service monitoring entity (SME).
The role of this SME is to monitor the service request
process at the locations visited and apply the proposed
Service Migration Policy (referred to hereafter as the
SME Migration Policy) and eventually reach the optimal
SME (and service) node location. At the end of this
process the SME will notify the original service node
of the optimal service node position. At each node, the
SME will enable the monitoring process and based on
its results, it will determine the next hop. Finally, the
service will be placed at the optimal position without
being installed in all intermediate nodes (e.g., see Figure
6).

Service movement can also be accelerated by in-
stalling a monitoring process at each node in the net-
work, thus, have available the aggregate service demand

associated with each node. When the service (or an
entity similar to SME previously discussed but with
no monitoring functionality) moves to a new node, is
already aware about the aggregate service demands of
its previous location. For the example depicted in Figure
4, when the service is located at node y, the aggregate
service demands Λz

y are available. When it moves to node
z, the amount of data carried through the link between
node y and node z will be the aggregate amount of
data for all node in treez

y and therefore, the aggregate
service demands will be equal to Λz

y . Assuming that
the estimation regarding Λz

y is carried from node y to
node z, the direction of the inequality of Lemma 1 can
be determined immediately, using the estimations of the
monitoring process at node y. Eventually, the service
is capable of moving much faster than before to the
optimal service node (no need to wait for estimations
regarding a piece of information conveyed from the
previous node). However, this approach assumes that all
nodes in the network continuously monitor the aggregate
service demands which may not be realistic for some
networks.

The estimation of the aggregate service demands at
the service node is important since the service movement
depends on their values. Consider the case where node
y is the service node and node z is a neighbor node,
z ∈ Sy. The aggregate service demands for treey

z are
given by Equation (3) and denoted by Λy

z , ∀z ∈ Sy.
It is important to understand how the service node
becomes aware of Λy

z . One possible approach would
be for all nodes u in the network to send messages
to the service node regarding their service demands λu.
However, apart from the fact that this approach requires
a large number of messages (O(N)), the determination
of λu by each node u may be fairly inaccurate since there
may not be an adequate amount of data associated with a
given node and service to estimate accurate mean values
λu (demands per unit time). Eventually, the estimated
aggregate service demands may not be as accurate as it
should.

An alternative approach would be to estimate Λy
z (i.e.,

the aggregate service demands corresponding to any set
of treey

z for any pair of nodes y, z in the network)
based on aggregate statistics regarding the amount of
data forwarded in the network between the service node
and each neighbor node that correspond to the particular
service. Let Λ̃y

z denote the aforementioned estimation
Since Λ̃y

z is the sum of a number of random variables
generated by typically a large number of nodes in treey

z ,
it is evident that its estimation can be more accurate than
that of each λu, u ∈ treey

z , and faster (more aggregate
demand events per unit time).

It is important to note that even if the estimate Λ̃y
z is

not very accurate (e.g., because the afforded sampling
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horizon is small), its inaccuracy is very likely not to
impact on the correct operation of the proposed Service
Migration Policy since the latter considers differences in
the values Λy

z associated with neighbor nodes and not
actual values.

In view of Equation (6) from Theorem 3, it can be
observed that when the number of hops between the
service node and the optimal service node is likely
to be relatively large (i is large), then the difference
Λhi

hi−1
− Λhi−1

hi
is relatively large as well. Therefore, a

relatively small time horizon may be sufficient to derive
sufficiently accurate service demand rates and move the
service location to the next node. When the number of
hops is relatively small (i is small), Λhi

hi−1
is likely to be

closer to Λhi−1

hi
. Therefore, a relatively large time horizon

may be required to derive sufficiently accurate aggregate
demand rates and move the service location to the next
node.

VII. CONCLUSIONS

The efficient service placement problem for the tree
topology case was studied in this paper. This problem,
identical to the 1-median problem, is hard to be solved
since existing approaches require global information and
O(N2) messages. As a result these approaches are not
suitable for dynamic environments.

In order to cope with this inefficiency, the idea of
service migration was exploited in this paper. Initially,
analytical results have shown that in order to determine
the cost difference among neighbor service nodes global
information is not required. Information regarding the
aggregate service demands of a certain set of nodes
can easily become available at the current service node
using a simple monitoring process. It was proved that
this information is adequate for determining at which
neighbor node the service cost will decrease. It should
be noted that this result was also proved to be valid for
a general network topology.

The aforementioned analytical results and the subse-
quent observations were the motivation behind a simple
migration policy that is proposed here. This policy allows
for the service movement among neighbor nodes. It
is exclusively based on the aggregate service demands
information (always available at the service node) and
therefore, it is scalable, of low complexity (no message
exchanges) and can easily adapt to any changes of the
network status (suitable for dynamic environments).

Regarding a static environment (as it is the case
considered by the existing solutions for the 1-median
problem), it was analytically proved that if the ser-
vice is moved under the proposed policy, it eventually
arrives at the optimal service location. Moreover, the
cost decreases monotonically along the path over which
the service is moved towards the optimal service node.

Consequently, the solution provided by the proposed
simple policy is the optimal one (identical to the solution
of the 1-median problem).

Implementation and convergence issues have also been
discussed. The estimation of the aggregate service de-
mands was proposed to take place by monitoring the
amount of data associated to the particular service.

Finally, as it is stated before, this paper studied
the undirected tree topology case, which in itself is
rather important in communication networks, where data
packets are forwarded towards their destination over the
branches of a tree defined by the employed routing
protocol. As it was shown here, some of the results
may be used for the general topology case, while others
can be extended for the latter case. Thus, inspired by
the analytical results presented in this paper, further
future work will focus on the p-median problem for the
general network topology case and try to provide for a
scalable, low complexity solution suitable for dynamic
environments, such as ad hoc and autonomic networks,
exploiting the idea of service migration.

REFERENCES

[1] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis, “Joint Object
Placement and Node Dimensioning for Internet Content Distri-
bution,” Information Processing Letters, Vol. 89, No. 6, pp. 273-
279, March 2004.

[2] http:\\www.cascadas-project.org
[3] http:\\www.bionets.org
[4] http:\\www.ana-project.org
[5] P.B. Mirchandani and R.L. Francis, “Discrete Location Theory,”

John Wiley and Sons, 1990.
[6] O. Kariv, and S.L. Hakimi, “An algorithmic approach to network

location problems, II: The p-medians,” SIAM Journal on Applied
Mathematics, 37, 3 (1979), 539-560.

[7] A. Tamir, “An O(pn2) algorithm for p-median and related prob-
lems on tree graphs,” Operations Research Letters, 19 (1996),
59–64.

[8] L. Yamamoto and G. Leduc, “Autonomous reflectors over active
networks: towards seamless group communication,” AISB jour-
nal, special issue on agent technology, 1(1):125–146, December
2001.

[9] J.-H. Lin, and J.S. Vitter, “Approximation Algorithms for
Geometric Median Problems,” Information Processing Letters,
44:245-249, 1992.

[10] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Analysis of
a local search heuristic for facility location problems,” Proc. 9th
Annual ACM-SIAM Symposium on Discrete Algorithms, 1-10,
1998.

[11] V. Arya, N. Garg, R. Khandekar, K. Munagala, and V. Pandit,
“Local search heuristic for k-median and facility location prob-
lems,” In Proceedings of the 33rd Annual Symposium on Theory
of Computing (ACM STOC), pages 21–29. ACM Press, 2001.

[12] I.D. Baev and R. Rajaraman, “Approximation algorithms for
data placement in arbitrary networks,” In Proceedings of the
12th Annual Symposium on Discrete Algorithms (ACM-SIAM
SODA), pages 661–670, January 2001.

[13] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Placement
algorithms for hierarchical cooperative caching,” In Proceedings
of the 10th Annual Symposium on Discrete Algorithms (ACM-
SIAM SODA), pages 586-595, 1999.

[14] D. Bertsekas and R. Gallager, “Data networks,” 2nd edition,
Prentice-Hall, Inc., 1992.


