
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

Performance Evaluation in
Cloud-Edge Hybrid Gaming Systems

Athanasios Tsipis, Konstantinos Oikonomou
Dept. of Informatics

Ionian University
Corfu, Greece

Email: {atsipis, okon}@ionio.gr

Vasileios Komianos
Dept. of Audio & Visual Arts

Ionian University
Corfu, Greece

Email: vkomianos@ionio.gr

Ioannis Stavrakakis
Dept. of Informatics & Telecom.

Nat. & Kap. University of Athens
Athens, Greece

Email: ioannis@di.uoa.gr

Abstract—Cloud gaming architectures have emerged in efforts
to provide efficient execution of computer video games in com-
puter machines and mobile devices with low processing/rendering
capabilities. Such approaches are prone to network delays since
the rendering process is offloaded to the cloud, hence, increasing
cloud’s computational needs and decreasing user coverage. To
tackle this challenge cloud-edge hybrid gaming systems were
proposed in order to reduce network latency and improve user
experience. By deploying rendering devices at the edge of the
cloud and in close proximity to the end users, cloud-edge hybrid
systems aim at augmenting the cloud’s computational capacity
and reducing the game’s response time. In current work a
preliminary simulation model to evaluate the performance of
such systems and test the above hypothesis is presented, showing
that cloud-edge hybrid gaming systems are able to outperform
conventional cloud gaming architectures in latency reduction.

Index Terms—Cloud Gaming, Cloud Edge Systems, Latency.

I. INTRODUCTION

In this paper, performance issues in cloud gaming systems
are studied. Video games are processing demanding, memory
consuming computer applications and cloud gaming systems
are proposed in order to provide gamers the ability to play
video games in unresourceful computer machines. In addition,
cloud gaming solutions are able to improve the quality of
gaming experience by increasing the provided rendered frames
per second (fps) and reduce the time needed for the game to
respond to their actions (response time).

Response time is an important aspect of performance af-
fecting the quality of user experience in cloud gaming envi-
ronments and the term latency [1] is used in order to measure
it. Previous works have shown that latency depends on the
processing power of both client and server computer machines
while it is affected by the network connection used for client-
server communication [2], [3]. Cloud gaming providers are
able to build powerful cloud gaming systems but the network
capacity and its existing conditions are often imponderable and
they can be the source of 80% of latency [4] as the rendered
game frames and audio segments, which are of considerable
size, have to be streamed over the network. Given that in
cloud gaming systems the servers are in most cases placed
in relatively great distances [5], many works are addressing
this issue by placing rendering servers with potentially lower
capabilities and cost, as near as possible to the game client in

Figure 1. A conventional cloud gaming system versus an Edge device
rendering-assisted cloud hybrid gaming system.

order to reduce the network latency, thus calling this approach
cloud-edge hybrid gaming system [4], [6]. This difference can
be observed in Fig. 1 which depicts a conventional cloud
gaming system versus a cloud-edge hybrid gaming system
after deploying rendering devices to assist the server at the
edges of the cloud and in close proximity to the user clients.

In this paper a novel evaluation model designed to facilitate
study of cloud-edge performance issues is presented. The pre-
sented model’s main purpose is to examine the resulted latency
in different cloud-edge hybrid gaming setups with varying
number of game renderers and in comparison with the solely
cloud gaming approach. For this purpose a detailed end to end
description of the data flow alongside with a latency analysis
is conducted in order to decompose and identify critical points
where bottlenecks and delays may occur due to the resource
demanding nature of these systems. It is hypothesized that
there exists a dependency between the number of deployed
edge game renderers and latency reduction.

The evaluation model is then put to the test under different
configurations and gaming conditions for various simulation
scenarios. Preliminary simulation results show that cloud edge
hybrid gaming systems are indeed able to outperform conven-
tional cloud gaming architectures with considerable rendering
power in latency reduction, depending on the number of
deployed edge game renderers. However, after a certain point
the reduction rate is significantly reduced.

In Section II, a review of relevant works is provided
focusing in study of cloud gaming latency issues and cloud-
edge architectures. In Section III, the flow of users input

BalkanCom'19 1570541474

1



commands and the resulted streaming media between clients
and servers in cloud-edge gaming architectures is presented. In
Section IV, a preliminary analysis of the latency factor based
on the considered data flow is presented. In Section V, the
model setup that is used for the simulation is resented and
its results are explained in Section VI. Finally, Section VII
concludes the findings of this work and draws the guidelines
for future work.

II. RELATED WORK

Studies like [7], [8] indicate that low-latency is a force
driver in order to achieve acceptable user-experience, in cloud
gaming systems. This is also the case in [9], where the authors
provide a suite of measurement techniques to decompose and
analyze the Quality of Experience (QoE) of existing cloud
gaming systems. In fact, in works such as [10]–[12] it is shown
that there exists a threshold of maximum latency tolerance,
above which players begin to notice significant delay in games.
This delay refers to a range of 100 to 150 ms of response time
for a seamless gameplay in fast-paced games (e.g., first-person
shooter games) and to a range of 200 to 300 ms for slower-
paced games (e.g., role playing games) [13], [14].

Moreover, previous research [1], [11], [12] points out that
uploading generated command input data from the players’
client to the cloud, i.e., the upstream latency, does not seriously
affect the QoE since the data are small in size. On the other
hand in the case of the downstream latency, the size of the
data packets that encapsulate the newly rendered game frames
have a significantly larger size. To address this problem Lin
and Shen [15] in their model, named CloudFog, propose
a solution to reduce the downstream latency by installing
powerful devices, called supernodes, which are situated near
the end-users and are responsible for rendering new game
frames. In a similar approach Choy et al. [4], [6] present
a hybrid cloud gaming system, called EdgeCloud, which
incorporates resources from content delivery network (CDN)
servers which are in close proximity to the end-users with
the aim of supporting latency-sensitive applications. In their
experiments they discovered that this approach can lead up
to a 90% user coverage in contrast with conventional cloud
gaming systems where only 70% of the users were able to
meet the 80 ms latency target.

III. SYSTEM DATA FLOW

Based on the studies mentioned in previous section, a cloud-
edge hybrid gaming system data flow model, as illustrated in
Fig. 2, is described here.

Upon data generation at the game client by the player’s
gaming command input, the player’s actions are sent using a
Command Data Packet (CDP). The CDP contains a few Bytes
of information regarding the game actions issued by the player
and is sent to a device (hereafter named as the game renderer)
at the edges of the cloud, in close proximity to the player’s
game client, and then forwarded into the cloud towards the
game server hosting the game world.

Figure 2. Game Data flow in cloud-edge hybrid gaming systems where the
game client sends commands to the cloud game server and the server responds
with update actions rendered by the edge game renderer and streamed back
to the client for display.

When the CDP reaches the game server it is queued inside
a buffer containing CDPs from other game clients along
with actions generated by the game’s AI engine. At regular
intervals, which correspond to the game server’s tick rate,
the game server computes all of these actions and translates
them into a new game world status update. The update is
then encoded into a new State Data Packet (SDP), and sent
back, as a response, to the game renderer. The size of the
SDP varies depending on spikes in gameplay and fluctuations
in the amount of updated elements inside the game world.
However, its size is relatively small, usually some hundreds of
Bytes. Upon reception at the game renderer, the SDP enters the
render queue. At a fixed rate, i.e., the frame rate, the renderer
uses the information included in the SDP, in order to create a
new video image frame that captures the game status update.
It then encapsulates the newly rendered game frame inside a
Frame Data Packet (FDP), which is streamed back to the game
client. In contrast with the previous packets (i.e. CDP and SDP)
a FDP is large in size, in a factor of KBytes depending on
video image quality and resolution, containing all information
regarding the newly rendered game scene. When the FDP
reaches the game client it enters its queue, which contains
buffered frames arriving from the renderer. The display device
of the game client displays these frames in a fixed refresh rate
which depends on the hardware used.

The above outlined game data flow is important because it
frees cloud game servers from having to compute and render
complex graphics by their own and then having to stream
huge generated frames to long distances over the Internet to
the game clients. Instead, with the intervention of the edge
game renderers, the rendering takes place near the game clients
reducing game latency and increasing user coverage.

IV. LATENCY ANALYSIS

Cloud gaming offers hardware independence, allowing end-
users to play complex games by off-loading computational
resource demanding processes to the cloud [4]. In this way
cloud gaming offers the potential of playing games on the go
without the need for specialized equipment or/and hardware
(e.g., powerful GPUs). Therefore, players may engage with
the gaming world through various display devices, even while
moving in and out of network coverage. As already mentioned,
low latency is essential for unimpaired game play and a

2



fundamental design challenge for cloud gaming developers,
and therefore it is considered as a crucial measure for high
QoE [7].

For the data flow model described in previous section,
latency L is considered to be the total response delay, i.e.,
the time period that elapses between the moment the player
hits his/hers keyboard and issues a command action input
to the game system and the moment he/she can perceive
the result and notice an update in the status of the game
world. According to [1] this latency comprises three basic
components: Processing delay, playout delay and network
delay. However, for the hybrid system in question another
component is introduced, which is the rendering delay, and
therefore, L is equal to the sum of:

• Processing delay: denoted here as dpr, the time it takes
for the cloud game server to decode a CDP (forwarded
by an edge device, which holds information regarding the
player’s recent input actions), update the game state and
respond with a SDP, which encapsulates the update status
of the game world.

• Rendering delay: symbolized as dr, the time it takes
for an edge device to decode and translate a received
SDP and render it into a new video image frame before
streaming it to the player’s game client.

• Playout delay: given by dpl, the time it takes to issue
a command and create the CDP plus the difference
between time the player’s game client receives a new
FDP, corresponding to his/her initial command input, and
the time it takes for his display to present the new game
image, i.e., the display lag.

• Network delay: declared here as dn, the time elapsed
between transmission of a CDP and the reception of a
FDP. It is usually referred to as the network round trip
time (RTT). In current work it is associated with the
sum of transmission and propagation delays between the
player’s game client and the edge game renderer and vice-
versa and between the latter and the cloud game server
and vice-versa.

Hence, L is described by:

L = dpr + dr + dpl + dn, (1)

for a particular set of game client, renderer and server.
However, dn, as already mentioned is equal to the sum of
total transmission delay dt and total propagation delay dp in
the aforementioned set, and so Eq. (1) can be written as:

L = dpr + dr + dpl + dt + dp, (2)

where dt = δt(client→ renderer)+δt(renderer→ server)+
δt(server → renderer) + δt(renderer → client) and dp =
δp(client→ renderer) + δp(renderer→ server) + δp(server→
renderer) + δp(renderer→ client) respectively.

Taking it a step further, based on the works found in [16]
and [17], it is assumed that the game server computes new
game state updates, based on the combination of queued player
command inputs and game AI actions, at a fixed tick rate t,

such that the game server is able to send a new SDP every
T = 1/t seconds. Correspondingly, the game renderer, renders
new SDPs into FDPs with a fixed frame rate f , hence, every
F = 1/f seconds a new game scene is generated. Moreover,
the game client displays new buffered game frames at a steady
refresh rate r which depends on the display capabilities of the
client’s hardware, such that the game client can display a new
FDP every R = 1/r seconds. Taking into account that a new
CDP can arrive at the game server in the interval [nT, (n +
1)T ], after being processed it will have to wait for a time
lag period τs ≤ T before being encapsulated and sent in a
new SDP at time (n+ 1)T . Similarly, a new SDP arriving at
the game renderer in the interval [nF, (n+ 1)F ], it will have
to wait in queue for a time lag period τr ≤ F before being
rendered at the (n+ 1)F , and in sequence a FDP arriving at
the client in the interval [nR, (n+ 1)R], after being decoded,
it will have to wait in queue for a time lag period τc ≤ T
before being displayed at the (n+ 1)T .

Consequently, after adding the three lag periods, latency L
perceived by a player in his game client is given by:

L = dpr + dr + dpl + dt + dp + τs + τr + τc, (3)

Assuming no further delays induced by network protocols
and network traffic are present, and the fact that dpr, dr, dpl,
τs, and τc are unknown, but have an upper boundary, since
they are subject to hardware constraints, it follows that in order
to reduce latency in the hybrid system we must decrease the
values of dt and dp, i.e. the dn, and the value of the rendering
lag τr. It is hypothesized that a way to accomplish this is
by deploying more edge devices near the end-users that will
support the rendering procedure and reduce the distance the
FDPs must travel to reach the game clients.

V. EVALUATION MODEL SETUP

To evaluate the reduction of game clients’ latency triggered
by the deployment of more game renderers in the hybrid cloud-
edge gaming system, a simulation program in C++ has been
developed using OMNeT++. During network initialization
a random topology with 1000 uniformly and independently
distributed end-user nodes, i.e., the game clients, are placed
in a plane [0, 1]× [0, 1]. The cloud game server and the edge
game renderers are also placed in random positions inside
the plane and a connection link exists between every game
renderer and the cloud game server. However, a connection
between any game client and an edge game renderer exists
only if their euclidean distance is equal to or smaller than
a given connectivity radius rc. The criteria for selecting the
appropriate renderer in the given range is based on a distance
comparison of all possible connections, where the link with
the minimum distance weight is selected.

For simplicity reasons it is assumed that all transmissions
take place over an error-free channel with Internet speeds
capable of supporting the continuous stream of packets trans-
mitted and received by the network nodes. Each simulation
scenario lasts for 1000 sec and was conducted under three

3



0.12

0.13

0.14

0.15

0.16

0.17

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

G
am

e
C

lie
nt

L
at

en
cy

L̄

Number of Edge Game Renderers

rc=0.35
f = 30 Hz

+

+
+ + + + + + + +

+
f = 75 Hz
f = 120 Hz

∗
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

0.12

0.13

0.14

0.15

0.16

0.17

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

G
am

e
C

lie
nt

L
at

en
cy

L̄

Number of Edge Game Renderers

rc=0.40
f = 30 Hz

+

+
+ + + + + + + +

+
f = 75 Hz
f = 120 Hz

∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

0.12

0.13

0.14

0.15

0.16

0.17

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

G
am

e
C

lie
nt

L
at

en
cy

L̄

Number of Edge Game Renderers

rc=0.45
f = 30 Hz+

+
+

+
+ + + + + +

+
f = 75 Hz
f = 120 Hz

∗
∗ ∗

∗
∗ ∗ ∗ ∗ ∗ ∗

∗

Figure 3. Simulation results of average game client latency L̄ as a function of the number of edge game renderers for different network topologies based on
the value of rc and under different frame rates based on the value of f .

Table I
CLOUD-EDGE NETWORK SIMULATION PARAMETERS

Parameter Value

Simulation Time 1000 sec
Game Clients 1000
CDP Length 60 Bytes
SDP Length 1000 Bytes
FDP Length 4000 Bytes

Data Rate Transmission 5 Mbps
dpl Stochastic Distribution
dr Normal Distribution
dpr Normal Distribution
t 128 Hz
f 30, 75, and 120 Hz
r 60 Hz
rc 0.35, 0.40, and 0.45

different topologies based on different seed sets and different
values for the rc. The parameters of the simulation model are
summarized in Table I.

Each game client follows a stochastic process for generating
new CDPs which are then sent to its associated game renderer
and in sequence to the game server with a steady data rate
speed of 5 Mbps. This value was chosen based on the fact
that OnLive [18] recommends at least this speed for a seamless
gameplay experience [9]. In addition, the command generation
at the game client has an upper limit which matches the tick
rate of the game server, since the server would not be able to
process more packets.

Considering dpr at the server, based on [16], it is assumed
that it follows a normal distribution with mean value (µdpr ) of
3 ms and standard deviation value (σdpr ) of 0.1 ms. Similarly,
based on [9], dr also follows a normal distribution with mean
value (µdr

) of 40 ms and standard deviation value (σdr
) of

1 ms. The great advantage of cloud gaming still remains the
fact that it frees gameplay from being dependent on specific
hardware, but instead enables players to access games through
all kinds of devices and platforms. Taking into account this
diversity in the game clients’ screens, a random display delay
value was generated based on a stochastic distribution, in ad-
dition to the delay caused by command input which is around
10 ms for standard input devices (e.g. keyboard). Therefore,
the dpl is distributed within the range of [20, . . . , 40] ms [16],

including modern AR/VR headsets [19].
Regarding the tick rate t of the produced SDPs of the game

server, a popular rate for moderate-demanding games was
selected, i.e., 128 Hz, whereas in the case of the renderers, for
the render rate f , three values were taken into consideration,
i.e., 30 Hz, 75 Hz and 120 Hz, in order to show latency for
various popular frame rates and based on the fact that higher
frame rates that exceed the tick rate of the server won’t be
perceivable by the player, since no updates will be available
for rendering in time. As for the refresh rate r for displaying
FDPs in the game clients, the fixed value of 60 Hz was chosen
corresponding to moderate screens.

Finally, the various sizes of the different data packets were
chosen by monitoring the data exchanged between client and
server on the Uniquitous open-source gaming system [20]. For
this purpose the platform was installed alongside Unity’s game
engine in a closed network control environment, where data
traffic was recorded and analyzed in order to estimate the size
of the packets.

For simplicity reasons it is assumed that all players are
engaged in the same game world and they all witness the
same game scene changes. This simplification was adopted
in order to avoid the necessity and complexity of producing
frames with different perspectives for each game client.

VI. SIMULATION RESULTS

A set of experiments based on the aforementioned simu-
lation model is conducted in order to examine the latency
issues. Fig. 3 validates the behavior for various cases by
plotting the average game clients’ latency L̄ in the network
with 95% confidence interval as a function of the number of
deployed edge game renderers for three different topologies
(based on the value of connectivity radius rc) and for the three
different frame rates f . Both rc and f play an important role
in the initial value of the L̄ since for lower rc the clients
can detect renderers at closer proximity and for higher f
the rate of rendered SDPs is increased and so τr is reduced.
Additionally, as expected the addition of gradually more edge
game renderers, between the game server and the game clients,
boosts the response time of the gaming system and decreases
L̄, but it is important to notice that from a certain point forward
the reduction rate is significantly reduced.

Given that cloud gaming services and edge game renderers
can be of variable processing power it is questionable whether

4



0.132

0.134

0.136

0.138

0.14

0.142

0.144

0.146

0.148

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

G
am

e
C

lie
nt

L
at

en
cy

L̄

Number of Edge Game Renderers

Cloud-Edge: f = 30 Hz+

+

+

+
+

+ +
+ + +

+
Cloud: f = 60 Hz
Cloud: f = 90 Hz

Cloud: f = 120 Hz

Figure 4. Performance comparison between hybrid cloud-edge gaming system
for increasing number of renderers and conventional cloud gaming system for
different rendering power. The straight lines refer to the conventional model.

cloud-edge architecture provides better performance than con-
ventional cloud gaming architecture. In order to examine the
previous research question a simulation scenario is tested in
order to compare the resulted latency for conventional cloud
gaming systems of different rendering capabilities versus a
cloud-edge hybrid gaming system with varying number of
game renderers, but with less rendering power, i.e., Fig. 4.
Notice that for the comparison to be valid the coordinates of
the clients and the cloud server remained the same for the two
systems. The only difference was due to the addition of the
intermediate renderers for connectivity radius rc equal to 0.4.

Simulation results indicate that as the number of render-
ers is increased the latency is reduced. Compared to the
resulted latency of conventional architecture with higher frame
rates, depicted by horizontal parallel lines, it is observed that
conventional systems of sufficiently more rendering power
outperform the hybrid system but as the number of renderers
is increased the latter is able to perform better.

VII. CONCLUSION

In conclusion, current work showed that by deploying
hybrid cloud-edge gaming systems it is possible to reduce the
game clients’ latency and to outperform the conventional cloud
gaming architectures. According to preliminary simulation
results it was observed that when increasing renderers the
latency is reduced, however from a certain point forward the
reduction rate is significantly reduced. This finding has to
be further explored in future work where it will be studied
as a facility location problem in order to research if further
latency reduction can be achieved. An additional approach
towards this direction will be the adaptation of the simulation
model to more realistic rendering load parameters. Moreover,
a mathematical formulation of its behavior will be explored
and a demo testbed will be created to validate the findings.

ACKNOWLEDGMENT

This work was supported in part by project “A Pilot Wireless
Sensor Networks System for Synchronized Monitoring of
Climate and Soil Parameters in Olive Groves,” (MIS 5007309)
which is partially funded by European and National Greek
Funds (ESPA) under the Regional Operational Programme

“Ionian Islands 2014-2020.” In addition, this work was sup-
ported in part by the European Commission as part of the
ReCRED project (Horizon H2020 Framework Programme of
the European Union under GA number 653417), by the Chair
of Excellence UC3M - Santander Program and by the National
and Kapodistrian University of Athens (S.A.R.G.).

REFERENCES

[1] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei,
“Measuring the latency of cloud gaming systems,” in Proceedings of
the 19th ACM international conference on Multimedia. ACM, 2011,
pp. 1269–1272.

[2] M. Claypool and K. Claypool, “On latency and player actions in online
games,” 2006.

[3] W. Cai, R. Shea, C.-Y. Huang, K.-T. Chen, J. Liu, V. C. Leung, and
C.-H. Hsu, “A survey on cloud gaming: Future of computer games,”
IEEE Access, vol. 4, pp. 7605–7620, 2016.

[4] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “A hybrid edge-
cloud architecture for reducing on-demand gaming latency,” Multimedia
systems, vol. 20, no. 5, pp. 503–519, 2014.

[5] P. J. Braun, S. Pandi, R.-S. Schmoll, and F. H. Fitzek, “On the study and
deployment of mobile edge cloud for tactile internet using a 5g gaming
application,” in 2017 14th IEEE Annual Consumer Communications &
Networking Conference (CCNC). IEEE, 2017, pp. 154–159.

[6] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “Edgecloud: A new
hybrid platform for on-demand gaming,” Technical Report CS-2012–19,
University of Waterloo, 2012.

[7] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: architecture
and performance,” IEEE network, vol. 27, no. 4, pp. 16–21, 2013.

[8] M. Amiri, H. A. Osman, S. Shirmohammadi, and M. Abdallah, “Toward
delay-efficient game-aware data centers for cloud gaming,” ACM Trans-
actions on Multimedia Computing, Communications, and Applications
(TOMM), vol. 12, no. 5s, p. 71, 2016.

[9] K.-T. Chen, Y.-C. Chang, H.-J. Hsu, D.-Y. Chen, C.-Y. Huang, and C.-
H. Hsu, “On the quality of service of cloud gaming systems,” IEEE
Transactions on Multimedia, vol. 16, no. 2, pp. 480–495, 2014.

[10] M. Claypool and K. Claypool, “Latency can kill: precision and deadline
in online games,” in Proceedings of the first annual ACM SIGMM
conference on Multimedia systems. ACM, 2010, pp. 215–222.

[11] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “An evaluation
of qoe in cloud gaming based on subjective tests,” in 2011 Fifth
International Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing. IEEE, 2011, pp. 330–335.

[12] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm
in cloud gaming: A measurement study on cloud to end-user latency,”
in Proceedings of the 11th annual workshop on network and systems
support for games. IEEE Press, 2012, p. 2.

[13] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “Gaming in the
clouds: Qoe and the users’ perspective,” Mathematical and Computer
Modelling, vol. 57, no. 11-12, pp. 2883–2894, 2013.

[14] Y. Deng, Y. Li, R. Seet, X. Tang, and W. Cai, “The server allocation
problem for session-based multiplayer cloud gaming,” IEEE Transac-
tions on Multimedia, vol. 20, no. 5, pp. 1233–1245, 2018.

[15] Y. Lin and H. Shen, “Cloudfog: leveraging fog to extend cloud gaming
for thin-client mmog with high quality of service,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 2, pp. 431–445, 2017.

[16] F. Metzger, A. Rafetseder, and C. Schwartz, “A comprehensive end-to-
end lag model for online and cloud video gaming,” 5th ISCA/DEGA
Work. Percept. Qual. Syst.(PQS 2016), pp. 15–19, 2016.

[17] R. D. Yates, M. Tavan, Y. Hu, and D. Raychaudhuri, “Timely cloud
gaming,” in IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 2017, pp. 1–9.

[18] M. Claypool, D. Finkel, A. Grant, and M. Solano, “Thin to win? network
performance analysis of the onlive thin client game system,” in 2012
11th Annual Workshop on Network and Systems Support for Games
(NetGames). IEEE, 2012, pp. 1–6.

[19] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-
latency and ultra-reliable virtual reality,” IEEE Network, vol. 32, no. 2,
pp. 78–84, 2018.

[20] M. Luo and M. Claypool, “Uniquitous: Implementation and evaluation
of a cloud-based game system in unity,” in 2015 IEEE Games Enter-
tainment Media Conference (GEM). IEEE, 2015, pp. 1–6.

5


